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A simple hybrid approach, based on a gauge theory as well as a Hartree 
formalism, is presented for He II at zero temperature. Although this is intended 
to be merely a first step in an all-embracing theory, it already resolves quite 
neatly several old inconsistencies and corrects a few errors. As an illustration 
of its feasibility, a crude but instructive calculation is performed for the static 
structure factor of the system at low momentum transfers. A number of planned 
extensions and generalizations are outlined. 

1. I N T R O D U C T I O N  

That He I I  has been at the center of  a lively area of  research is an 
indisputable fact; that  it is still a most  intriguing system, both  experimentally 
and theoretically, is evident in any recent low-temperature conference,  for 
example,  the Vienna Sympos ium (Neut ron  Inelastic Scattering, 1978) and 
the Low Tempera ture  Conferences  (Proceedings o f  LT-15, 1978; Proceed- 
ings of  LT-16, 1981). 

The reason for this lies in its remarkable t he rmohydrodynamic  behavior  
(Putterman,  1974), in spite of  its extreme atomic simplicity (Bethe & 
Salpeter, 1957). After all, next to hydrogen,  the helium atom is the lightest 
and simplest. The quest ion then arises: H o w  can such a system with almost  
the simplest e lementary constituents and interatomic forces display such 
an intricate and rich macroscopic  behavior?  

One glaring aspect o f  this behavior  o f  He I I  is, o f  course, its super- 
fluidity, which has hitherto e luded a satisfactory microscopic  understanding.  
The most  pert inent  riddle in this connect ion  is the threefold relation: 
Bose-Eins te in  condensa t ion  superfluidity, order  parameter  superfluidity, 
and H e - H e  interaction superfluidity (London,  1964; Brewer, 1965; Tilley 
and Tilley, 1974; Chester,  1975). This theme far t ranscends He I I  itself, 
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since superfluidity seems to be the norm rather than the exception in 
low-temperature physics. For one thing, it occurs in both Fermi as well as 
Bose systems; for another, it characterizes not only neutral but also charged 
systems. According to recent speculations and hypotheses, we may even 
have "supersolids" (Reatto, 1969; Chester, 1970; Leggett, 1970; Saslow, 
1977) and "supergases" (Stwalley and Nosanow, 1976; Crampton et al., 
1979; Silvera and Walraven, 1980), illustrating all the more emphatically 
the fundamental nature of this peculiar phenomenon and its pervasiveness 
(Mendelssohn, 1956; Ginzburg, 1978; Chela-Flores, 1978). 

Another equally glaring aspect of the macroscopic behavior of He II 
is that it exhibits apparent features of a gas and a solid, besides those of a 
liquid (London, 1964; Khudeir, 1981). We recall here that its structure 
(Achter and Meyer, 1969; Hallock, 1972; Robkoff and Hallock, 1981; 
Svensson et al., 1980), represented by the pair correlation function g(r) 
and the static structure factor S(Q), conforms by and large with the familiar 
pattern of a simple liquid (Pryde, 1966; Egelstaff, 1967; Temperley et al., 
1968; March and Tosi, 1976). Yet it is very strongly interacting (the short- 
range part of the interatomic potential being several orders of magnitude 
greater than typical liquid energies) and highly dense (in the sense that the 
range of the interaction is comparable with the interparticle separation) 
(Woo, 1976; Bishop et al., 1977). The constituent particles are therefore so 
closely packed as if the system were a solid. This is even more transparent 
in its energy spectrum (Woods and Cowley, 1970, 1971), especially in the 
phonon branch which is reminiscent of the well-known acoustic branch in 
the dispersion relation of lattice vibrations in crystals (Kittel, 1976): He II 
seems to behave like a solid which has lost some of its rigidity. Paradoxically 
enough, however, it behaves in some other respects like a gas of almost 
noninteracting particles. For example, its molar volume at absolute zero 
(= 27.6 cm 3 mo1-1) (Donnelly, 1967) is more than three times the volume 
calculated from the known He-He interaction (Bishop et al., 1977). This is 
a consequence of the a"elatively large zero-point motion of the helium atoms, 
which leads to an expanded structure in which they can move quite freely 
over appreciable distances (Kittel and Kroemer, 1980). 

This peculiar "trichotomy" of behavior may have been the principal 
reason behind the diversity of microscopic models and theories professing 
to account for the bizarre properties of He II--ranging from the nearly 
independent-particle type [as in Bogoliubov's pioneering work (Bogoliubov, 
1947), and the fairly successful wave-theoretic approach of Gross (Gross, 
1963a; Gross, 1963b; Gross, 1966) and Pitaevskii (Pitaevskii, 1961)], to the 
lattice-model variety [for instance, Thouless' attempt to treat the system as 
a disordered quantum solid (Thouless, 1969)]. However, none can be said 
to embody the long-awaited microscopic theory of liquid helium; Landau's 
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phenomenological theory (Landau, 1941, 1947) seems to have fared much 
better. 

In fact, the hydrodynamic theory of He II has recently received a new 
impetus, following the development of various variational methods for 
deriving generalized two-fluid equations (Lhuillier et al., 1975; Geurst, 1976; 
Jackson, 1978, 1979), which may readily incorporate the effects of applied 
electric fields (Jackson, 1982) and are apparently suitable for treating a 
wider class of systems, such as 3He-4He mixtures, normal and superfluid 
3He, superconductors and classical fluids, including plasmas. The import- 
ance of this cannot be overemphasized, since it has been felt for some time 
now that a unified theory of these systems is overdue. They share with each 
other some striking similarities, although there exist conspicuous differences 
as well. 

This work initiates yet another approach along the same broad lines. 
It is the first of a planned series of papers aiming ultimately at formulating 
a comprehensive theory of He II, with possible extensions to the other 
systems just mentioned. The main idea is to adopt a hierarchy of successive 
approximations as different facets of the theory are gradually learned. From 
this standpoint, our theory should at present be judged on the basis of its 
potentialities, rather than any actual achievements. 

The long-term strategy is as follows. In this paper, I, we shall lay the 
foundations at absolute zero, borrowing in the process a few seminal ideas 
from quantum-field theory, and eliminating certain inconsistencies and 
errors in related previous work. In the second paper, II (Chela-Flores and 
Ghassib, 1986), we shall generalize the theory to arbitrary temperatures and 
establish the underlying gauge-theoretical aspects on a more solid ground. 
In subsequent papers, we shall work out in detail the thermohydrodynamics 
of He II, hoping to reconsider some long-standing problems and modify 
the theory to accommodate other related systems. 

A partial list of these problems appears, together with a general dis- 
cussion, in Section 4 of the present paper. Prior to this, the basic ingredients 
of the theory are set out, with special emphasis on the physical import of 
the key equations (Section 2), and a crude but illuminating calculation is 
presented for the liquid structure factor at low momentum transfer (Section 
3). The relevant mathematical details are collected together in an appendix. 

2. BASIC THEORY 

We first wish to revisit the old Hartree model of Gross and Pitaevskii 
for He II (Gross, 1963a, 1963b, 1966; Pitaevskii, 1961). Apart from its 
aesthetic appeal as an exceedingly simple starting point, this model has 
long provided a most fruitful framework for exploring a wide variety of 
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vortex phenomena and ion mobility in this system. However, its central 
assumption of the validity of a mean-field theory is clearly at odds with the 
strongly interacting nature of liquid helium. Moreover, it presupposes the 
presence of a substantial Bose-Einstein condensate--again in harmony with 
an almost-independent-boson model, rather than real He II. In this connec- 
tion, we remark that, following a period of uncertainty as to the existence 
of a condensate in He II (Jackson, 1974; Hyland and Rowlands, 1977) 
recent evidence has once again tilted in favor of the condensate (Sears et 
al., 1982): At 1 K, 13% of the 4He atoms seem to lie in the lowest-momentum 
state. However, the precise relation of this condensate fraction to super- 
fluidity is still a moot point. 

In this work Our underlying philosophy is to use the field equations 
beyond their normal range of validity, thereby disregarding their Hartree 
origins. Besides, we circumvent the need to assume the existence of a specific 
condensate fraction by treating Bose-Einstein condensation and super- 
fluidity as two distinct phenomena, the latter being viewed as an operational 
concept, defined by a set of clear-cut operations, such as the remarkable 
property of nonclassical rotational inertia (Yang, 1962; Kohn and Sherring- 
ton, 1970). The crucial new element introduced here is the adoption of a 
gauge theory (Chela-Flores, 1975; Chela-Flores, 1976; Chela-Flores, 1977), 
which should go a long way toward justifying our method. 

Prior to developing this theme, however, it is necessary to summarize 
the key points of the conventional Gross-Pitaevskii picture. 

2.1. The Conventional  Approach 

As already stated, this is a nearly-independent-particle model which 
ignores the short-range interatomic correlations. Strictly speaking, then, it 
cannot be applicable to He II. Nonetheless, the fact that it has been exten- 
sively applied to this system, with some undeniable successes (Gross, 1966), 
implies that there must be more than a modicum of truth in it. 

This may not be all that surprising, thanks to the gaslike properties of 
He II (Donelly, 1967; Kittel and Kroemer, 1980). A concession to the 
nonideal characteristics of the system is made by introducing a purely 
repulsive g-function interaction, in the manner of Bogoliubov's classical 
work (Bogoliubov, 1947). 

Notwithstanding this interaction, most particles apparently remain in 
the same zero-momentum state, thereby forming a condensate. In passing, 
we note, with Bogoliubov himself, that the choice of a zero-momentum 
state as the ground, or lowest-momentum, state is a mere reflection of the 
specific choice of the reference frame, which is taken here as the condensate 
itself. 
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Accordingly, instead of representing the systems by the usual permanent 
N 

,I,(x, t )=  11 ~,(x, t) 
i=1 

we can describe it quite adequately by any single-particle wave function 
tp(x, t). This so-called condensate wave function satisfies the nonlinear 
Schrrdinger equation 

,_0 I Ot tp(x, t) = -�89 t )+0(x,  t) V(x-x')lO(x' , t)l 2 dx' (1) 

and is normalized according to 

f [@(x, t)l 2 dx=  m (2) 

where N is the total number of particleJ. Here and throughout we use a 
system of units such that h = m, (the mass ofa  4He atom) = 1, the conversion 
factor being hZ/m4 = 12.1194 K ~2. 

Much has been written about the condensate wave function (Brewer, 
t966; Tilley and Tiltey, 1974). In the conventional approach, it may be 
viewed most simply as a coherent field with negligible fluctuations, the 
condensate being macroscopically occupied. Although this picture is clearly 
inconsistent with our own philosophy, we shall still start with equation (1), 
as explained below. 

The hydrodynamics follows from a Madelung transformation (Putter- 
man, 1974; Sh6nberg, 1954; Wong, 1976), namely, 

~b(x, t) = R(x, t) exp[iS(x, t)] (3) 

where R(x, t) is a real function related to the local density of the system 
(Gross, 1966), p =IR[ z, and the phase S(x, t) is another real quantity 
intimately linked with the velocity field, as we shall see. It is worth noting 
that the simultaneous determination of R (or, equivalently, p) and S is 
possible, even though N and S are conjugate variables obeying an uncer- 
tainty relation for any quantum system (Tilley and Tilley, 1974; Anderson, 
1966), because N is exceedingly large here. Substituting equation (3) into 
(1), and equating real and imaginary parts, we finally obtain the continuity 
equation: 

~t Re(x, t ) + V '  [R2(x, t)VS(x, t ) ]=0  (4) 

from the imaginary part, and the Bernoulli equation 

0 1 2 
-R(x ,  t) -~ S(x, t )+~V R(x, t) = E[V]R(x, t) (5) 
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from the real part, E[ V] being a functional of the interaction: 

E[ V]-=�89 t)]2+ I V(x-x ' )R2(x  ', t)dx' (6) 

Clearly, considered as an eigenvalue problem, equation (5) with E[ V] = 0 
describes the nonsuperfluid ideal Bose gas. We shall return to this problem 
shortly. 

2.2. Present Formalism 

The point of departure of this work from the conventional approach 
just outlined is that we propose to base our study of the II on the field 
equations (4)-(6), supplemented with equations (2) and (3), irrespective of 
their origins. In particular, we inject into the formalism various aspects of 
a gauge theory (Chela-Flores, 1975); ours may therefore be regarded as a 
hybrid approach. The claim is that gauge invariance is a fundamental 
symmetry of nature (Weinberg, 1975), from which there follows the desired 

function describing superfluid helium. It will be recalled, in this respect, 
that equation (1) has invariance of the first kind (Gross, 1966). We now 
assume that invariance of the second kind (Utiyama, 1956) also holds and 
hence aim at deriving the whole theory from an action principle, in which 
the coupling of the gauge field to ~b is dictated by symmetry requirements. 
This follows closely the steps of Yang and Mills (Yang and Mills, 1954); 
in our case, however, we shall have the benefit of a much simpler Abelian 
theory--unlike the comparatively more sophisticated non-Abelian theory 
of, say, isospin symmetry. We shall present the full derivation and elaborate 
on the principles involved in paper II (Chela-Flores and Ghassib, 1986), 
where the temperature will also be brought into the picture. 

For the time being, the gauge-theoretic approach [in the limit of a 
vanishing gauge field (Chela-Flores, 1975)] may be viewed as a mere 
variational formulation of the Hartree liquid model which invokes an 
appropriate Lagrangian density, subject to a gauge constraint dictated by 
quantum field theory. Evidently, a shrewd guess of the Lagrangian density 
is crucial here. Chela-Flores' choice (Chela-Flores, 1975) was directly 
inspired by the Gross-Pitaevskii formalism (Gross, 1963a; Pitaevskii, 1961); 
other choices, based on entirely different considerations, may also be poss- 
ible, the corresponding field equations being obtained when the prescribed 
"crank is turned." Thus, we have a scheme of successive approximations 
in which the present choice (Chela-Flores, 1975) of Lagrangian density is 
only the first step. 

Returning to equation (6): The first term on the right can be thought 
of as a kinetic energy p2/2. A plausible interpretation, then, is that VS is 
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the "superfluid momentum" of the system Ps, which is also the velocity v 
in our system of units. Alternatively, equation (5) may be regarded as an 
eigenvalue equation; it can be reexpressed in the compact form 

(~ -E[  V])R =0  (7) 

with 

[] =- -aS~at + �89 2 (8) 

The eigenvalue problem summarized in equation (5)-(8) seems to be 
rich in content. In the first place, if it turns out that this problem does 
indeed describe He II, or at least some aspects of its behavior, as we claim, 
then we must infer that superfluidity is closely associated with the two terms 
on the right-hand side of equation (6). This is not as far fetched as it may 
seem: The term (VS)2/2 is simply v2/2, as we have seen, and it should 
therefore be reminiscent of Landau's criterion for superfluidity (Landau, 
1941, 1947); moreover, the interaction term is expected to play a crucial 
role in this connection, judging from all previous studies [for example, 
Bogoliubov's original work (Bogoliubov, 1947)]. 

In the second place, equation (7) is Bernoulli-like (Putterman, 1974; 
Lamb, 1932). It can be rewritten as 

-as/a  = ( v s ) 2 / 2  + t) (9) 

Dividing throughout by the volume of the system (assumed to be unity for 
simplicity), we can see at once that each term in this equation is essentially 
a pressure. In particular, the left-hand side (-aS~at) may readily be inter- 
preted as the internal pressure of the system; henceforth we shall refer to 
it as the Bernoulli pressure. Further, ~-(x, t) is defined as 

1 VZR 
~I V(x-x')RZ(x" t) dx' (10) t)=- 

where the first term on the right is the so-called quantum pressure (Gross, 
1963a; Gross, 1963b; Gross, 1966), and the second is some effective pressure 
arising from the effects of the binary He-He  potential. 

Now, on switching off the interaction V, the term (VS)2/2 in equation 
(9) cancels out exactly the quantum-pressure term in equation (10). Thus, 
the Bernoulli pressure in our zero-temperature formalism vanishes for the 
ideal Bose gas--as expected, since all the particles will then be in the 
zero-momentum state and will not, therefore, exert any force on the walls 
of the container. On the other hand, when V is switched on, the Bernoulli 
pressure will be some positive number. This will be relatively large for a 
purely repulsive (positive) potential; whereas it will be small if an attractive 
(negative) component is added to the potential. It seems, then, that the 
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Bernoulli pressure can be regarded as a crude qualitative guide to the effects 
of the He-He interaction on the hydrodynamics of the system. This con- 
clusion is sufficiently interesting to merit a more careful investigation. 

Other significant effects can also be deduced from equation (7), such 
as the well-known Josephson effects (Tilley and Tilley, 1974), which arise 
when two volumes of bulk He II are connected by a weak link, in complete 
analogy with two bulk superconductors weakly coupled together. We note, 
in passing, that if the gradient of both sides of equation (7) is taken, 
Newton's second law for the "superfluid" particles will immediately be 
obtained. 

Finally, the potentialities of the above approach may be illustrated by 
using equation (7) to probe the atomic structure of He II. This constitutes 
the main theme of the next section. 

3. A CRUDE CALCULATION FOR S(Q) 

We examine here equation (7) in its velocity-linearized version, for a 
stationary fluid, with a purely repulsive g-function V ( x - x ' ) :  U$(x-x').  
To simplify the mathematics further, we consider only the long-wavelength 
limit, corresponding to small momentum transfers Q, and adopt a spherically 
symmetric solution. 

What do these approximations entail? The first simply implies that 
only low fluid velocities are permitted, so that the quadratic term in v, 
(•S)2/2, is ignored. The second means that the velocity potential ( -OS/a t )  
can be set equal to a constant, E~, say. The long-wavelength limit is precisely 
the region under present investigation. And a spherically symmetric solution 
indicates that the local density p(x) = p(r)  = R2(r), where the dependence 
on t has now been dropped. All these are perfectly plausible approximations 
which should lead to a physically sound result. 

However, the g-function interaction is a somewhat different matter. 
Although its use is perhaps fully justified in studying phenomena whose 
characteristic lengths are much larger than the range of the interparticle 
force, such as vortices (Gross, 1963a; Gross, 1966), this can hardly be the 
case in the present context, involving as it does the atomic order of He II. 
The fine structure of the He-He potential is bound to be important, since 
the 4He atoms can easily explore it by virtue of their large zero-point motion 
arising from their very light masses. Besides, the crucial role of Fr6hlich's 
attractive electron-phonon interaction (Fr6hlich, 1950) in the microscopic 
theory of superconductivity (Bard~en et al., 1957) is a poignant warning 
that the weakly attractive (Van de Waals) tail of the He-He counterpart 
cannot be suppressed with impunity. Of more immediate relevance to the 
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present calculation is the fact that the attractive part primarily determines 
the density of the system, among other properties (Yang, 1970), so that the 
absence of  this part is inconsistent with the use of the experimental density. 
This point is worth remembering in the analysis of our results. In short, 
then, the employment of the &function interaction here is dictated by 
mathematical convenience, rather than by physical considerations. It may 
be viewed as an apt starting point for an eventual systematic investigation, 
based on a hierarchy of more and more refined interactions (Bishop et al., 
1977; Aziz et al., 1979). 

With the above approximations, equation (7) reduces at once to the 
following equation of motion for the local density p(r):  

p U -  e~ - V~(p'/~) / ( 2p '/~) = o (11) 

o r  

02 p l / 2  = 0 
2 p  3/2 U - 2E~p 1/2 __ 0 r - ' '~  (12) 

This can be readily solved by direct integration (Chela-Flores, 1977)--noting 
that (i) as r--> oo, p--> p~o = const, which is nothing but the particle density 
of the bulk system; and (ii) for r-< ro, p = 0, ro being the "effective" hard-core 
radius. The respective experimental values are (Wilks, 1967; Mountain and 
Ravech6, 1973) P~o = 0.1450 g/cm 3 = 2.18 x 10 -2 particles A -3, and ro = 2.0 ~ .  
The solution, subject to these boundary conditions, is 

p( r) = p~ tanh2[A(ro - r)] (13) 

with 

A ~ ( p ~ U )  1/2 (14)  

so that the corresponding radial distribution function is simply 

g(r)  = p(r)/po~ = tanh2[A(r0- r)] (15) 

This expression is clearly a reflection of the gaslike aspects of the model 
adopted. However, some liquid effects can be incorporated through the 
parameter A just defined. We have attempted to do this by considering two 
alternative approaches. The first consists in comparing equation (15), for 
several values of Aro, with the experimental curve for g(r)  (Achter and 
Meyer, 1969). It turns out that a value of ~4.0 is not unreasonable for Aro. 
Needless to say, this is not a parameter-fitting exercise; the experimental 
curve is viewed here as a mere guide. A more rigorous comparison is hardly 
necessary under the present circumstances. 
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The second approach invokes the familiar expression for a two-body 
pseudopotential (Huang, 1963; Pathria, 1972): 

U~(r) = 4~'a03(r) (16) 

in our system of units, where ao is the relevant S-wave scattering length 
(Joachain, 1979). A most appropriate value for fad is =2.1 A, which pertains 
to the so-called Sposito potential (Bishop et al., 1977; Sposito, 1970). This 
was constructed such that its short-range part reproduces the repuslive 
potential deduced from the experimental high-energy 4He-4He scattering 
data; whereas its long-range component has the correct asymptotic (dipole- 
dipole and dipole-quadrupole) behavior. Unlike all the other He-He 
potentials available in the literature, however, the Sposito potential was 
adjusted so as to yield the measured ground-state energy of liquid 4He, 
when combined with the virial theorem, and with the experimental g(r) .  It 
follows that the choice of its scattering length introduces some liquid effects. 
We can now compute the parameter A from equations (14) and (16): 

A = (41raopo~) 1/2 = 0.75/~-1 

so that Aro = 1.5, which is of the same order of magnitude as the value given 
by the first approach. 

Having determined g(r) ,  we can obtain the corresponding liquid struc- 
ture factor S(Q) by simply plugging equation (15) in the definining equation 
(March and Tosi, 1976) 

+47rp f ~  
S (Q)  = 1 ~ Jo [ g ( r ) -  1]r sin(Or) dr (17) 

where Q is the scattering wave vector specifying the momentum transfer to 
the medium. Thus, 

_ 4~-p foo sech2[A(ro- r)]r sin(Qr) dr (18) s ( o )  = 1 Q Jo 

For small Q, it is shown in the Appendix that equation (18) reduces to 

S ( Q )  = So+ $2Q2+ O(Q 3) (19) 

with 

So =- 1 - 47rp~r3 f l  and $2 =- 4~p~rSof2 (20) 

fl, f2 being some numerical factors. For Aro -> 5.2, a fairly satisfactory 
agreement with experiment (Hallock, 1972) is obtained; whereas for lower 
values of Aro such an agreement is possible only if p~ is regarded as a 
floating parameter to be determined by fitting the theoretical with the 
experimental curve. Curiously enough, a rather similar conclusion is drawn 
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in previous work (Chela-Flores, 1977) about the value Ar0 ~ 5.2. However, 
in view of some inaccuracies and errors in that work, the similarity involved 
here must be fortuitous. [In particular, alluding to (Chela-Flores, 1977), 
the integral in equation (24) should be preceded by a factor of (At0)-1; the 
signs in equation (3) of Appendix C are all wrong; the integral Is-= 
So x2 sech2 x dx  is evaluated inaccurately; and the value of the fluid density 
is underestimated by a factor of ~20.] Equations (19) and (20) represent 
our central result. Any improvements or refinements in the present calcula- 
tion should ultimately manifest themselves in an even better agreement with 
experiment. For the time being, the above semiquantitative success remains 
the best that can be achieved within our modest framework. Nevertheless, 
it is essentially a low-density (gas) result. Accordingly, it should also follow 
from an appropriate virial expansion (Keller, 1969; Larsen et a l ,  1965; 
Bruch, 1969). Crude estimates based on available experimental data for the 
second virial coefficient (Hirschfelder et al., 1964; Mason and Spurling, 
1969) seem to support this. 

4. SUMMARY AND DISCUSSION 

In this work we have constructed a hybrid theory for He II based on 
the Gross-Pitaevskii model as well as a more recent gauge formalism. The 
new theory seems to be superior to either approach in that it resolves quite 
neatly a few old inconsistencies and diff• in this domain without 
marring the essential simplicity of the picture involved. 

As an illustration of the potentialities of our theory, we have computed 
the liquid structure factor for small momentum transfers using a set of 
sharply defined approximations. The result agrees with experiment to a 
satisfactory extent, considering the limited range of validity of these approxi- 
mations. In this respect, several prospective generalizations suggest them- 
selves. 

The first concerns the interparticle potential V, whose importance can 
hardly be overexaggerated. As already pointed out, its fine structure is 
probably vital in atomic-order calculations. However, the use of realistic 
potentials (Bishop et al., 1977; Aziz et al., 1979; Sposito, 1970) renders the 
computations rather involved. Thus, while aiming eventually at employing 
such potentials, one may approach this problem in the short run by repeating 
the calculation of S(Q) for other more refined models than the 6 function--  
for instance, the so-called (pure) boundary condition model (Feshbach and 
Lomon, 1964). This is a nontrivial, although still fairly simple, potential 
which may be expressed as the sum of a suitable repulsive step function 
and an attractive 6 function (Kim and Tubis, 1970). ?It is therefore a better 
simulation of the He-He interaction. 
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Other generalizations follow by relaxing the set of approximations 
introduced to simplify the calculations. The hope here is to extend the range 
of validity of S ( Q )  beyond the small Q limit. A particularly worthy goal 
in this connection is to try and establish a general relation between S ( Q )  
and the excitation energy of He II over the entire spectrum of Q, in the 
spirit of Bijl's pioneering effort (Bijl, 1940; Mihara and Puff, 1968; Khanna 
and Sinha, 1977). It is interesting to see how far one could go along these 
lines within the extended framework of our approach (Chela-Flores and 
Ghassib, 1986). 

Another perennial problem is the further development of the hydrody- 
namic theme. This is a vast field (Putterman, 1974). The idea is to exploit 
any analogies and correspondences with classical hydrodynamics, in the 
hope of presenting eventually a complete and self-consistent treatment of 
superfluid hydrodynamics. 

These, along with other problems of long standing mentioned in the 
Introduction, should ultimately enhance our understanding of the profound 
bonds between microscopic and macroscopic quantum phenomena. It is 
precisely here that we still face our most serious challenge. 
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A P P E N D I X :  EVALUATION OF S(Q) FOR SMALL Q 

The liquid structure factor S(Q) is given, according to the present 
model, by equation (18). With the change of variable 

x = A ( r -  ro) 

together with the definitions 

y=- Qro, c~ =- A fl=-- a -~ 

Equation (18) reduces at once to 

Q[ S(  Q ) - 1]/ 4 ~rpoj 2o = - f l  I 

where I is the integral 

I-= (1 +fix) sechZ x sin[y(1 + r dx 
- - o l  
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or, using the addition formula for s in(A+ B), 

I = sech 2 x sin y cos(/3xy) dx + sech a x sin(/3xy) cos y dx 
- c t  

+• x s e c h 2 x s i n y c o s ( ~ x y )  d x + ~  xsech2xs in (~xy )  c o s y d x  
oz 

This can be simplified further by splitting each of the four integrals into 
0 

two: one of the form I_,~f(x) dx, and another  of  the form Jof (X)  dx. 
Altogether, then, we have eight integrals: four "finite" (i.e., with a finite 
upper  limit) and four "infinite" (the upper  limit being oo). 

Now, in the low-Q region under discussion here, we can use cos y -~ 1 
and sin y = y in all of  these eight integrals. Moreover, in the finite integrals 
only, we can set sin(/3xy)= [3xy and cos(/3xy)~ 1. It follows that, in this 
region, 

I =/finite +/infinite 

where, after some trivial manipulations, 

io  �9 
Innite = Y sech 2 x dx - 213y x sech 2 x dx + BY x 2 sech 2 x dx 

and 

o o 
/ i n f i n i t e  = Y sech 2 x cos(/3xy) dx + sech 2 x sin(/3xy) dx 

+ ~y x sech2 x cos(,Sxy) dx + ~ x sech2 x sin(~xy) dx 

For I~nite: The first term yields by direct integration, 

y(tanh x)~ = y tanh a 

the second gives, on integration by parts, 

-213y(x tanh x - I n  cosh x)~ = -2 /3y(a  tanh a - l n  cosh a )  

whereas the third term is best evaluated by numerical integration, since the 
validity of  the analytic solution obtained (Gradshteyn and Ryzik, 1965) in 
terms of Bernoulli numbers (Abramowitz and Stegun, 1965) is severely 
restricted by convergence difficulties. We have found that a simple method, 
such as Simpson's  rule with a fairly coarse mesh [say, 0(0.1)a],  is more 
than adequate in this connection. For reference purposes we list in Table 

c~ 
AI the integral I~ -= ~0 x2 sech2 x dx for several values of a. 
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Table AI. The Integral 
I~, --- f~' x2 sech2 x dx for 

Several Values of a 

1.0 0.20 
4.0 0.81 
5.2 0.82 

On  the o ther  hand ,  /'infinite c a n  be eva lua ted  analy t ica l ly ;  the ind iv idua l  
integrals  are  s imply  the Four i e r  cosine and  sine t rans forms  o f  the funct ions  
sech2x  and  x sech2 x. The  result ,  to nO(y3), is (Erdely i ,  1954) 

- -  1 - - - -  2 2 /in~nlte -- Y 24 fl y +[f lY In 2 - - 3  ~'(3)f13Y3] 

/ '~ / 2 37r 4 
2 9 3 2 2 +  zr + y[ln ) s i r  ] f l ~ - ~ f l Y - 1 - - ~ f l 3 Y  3] 

where  ~(3) is the  R i e m a n n  ff func t ion  given by  ( A b r a m o w i t z  and  Stegun,  
1965): ~'(3) = 1.20206. 

F ina l ly ,  then,  col lec t ing  all the  above  te rms toge the r  and  reexpress ing  
the resul t  in terms of  Q, we ob ta in  

S(Q)  = So+ S2Q 2 

with 

So =- 1 - 4zrpo~r~fl and  $2 -= 4 ~rp~ r~f2 

the  factors  f l ,  f2 be ing  def ined by  the express ions  

2 

f l  -= f l ( t anh  a + 1)+f12I~ + 2 8 2  In 2 +  r B 3 - 2 B  2 ( a  t anh  a - l n  cosh a )  
1 2 -  - 

and  

~.2 ~ 7 4 
= + 
Zt4 t4 I ,;I.t.I.O 

Table All. Numerical Results for S O and S 2 for Two Different Values of a --= Aro 

a /3 f, f2 So $1 

4.0 0.25 0.56 1.0 X 10 -2  -0.24 0.09 
5.2 0.19 0.42 4.3 x 10 -3 0.08 0.04 
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A summary of these results is presented in Table AII  for two different values 

of a -= Aro. 
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